NAD+ and Idiopathic Pulmonary Fibrosis (IPF)

Presentation by James Ewell

Peer reviewers: Vanessa Zankich & Amy Fabella

Introduction:

NAD+ IV therapy traditionally has been used to treat patients suffering from various mental illnesses and psychological disorder. However, NAD+ possesses potential benefits to function as a synergistic treatment for those suffering from the lung disease idiopathic pulmonary fibrosis. NAD+ can act as a moderator for various enzymes that control fibrosis within the lungs. Without sufficient NAD+, these enzymes fail to protect the lung from fibrotic symptoms seen in that of IPF.

 

Future Research

  • Test to see if NAD+ IV therapy directly correlates with CD28null T cell counts as well as activity of SIRT3 anti-fibrotic enzymes (in mice for example)

  • Attempt to find a standard daily dosage for IPF patients (5mg/day appears to work for mental and psychological disorders)

  • Develop stage 1 clinical trials to test a placebo and moderate overall symptoms

  • Develop stage 2 large-scale trials to scan for smaller side effects

References

Borie, R., Tabèze, L., Thabut, G., Nunes, H., Cottin, V., Marchand-Adam, S., Prevot, G., Tazi, A., Cadranel, J., Mal, H., Wemeau-Stervinou, L., Lafaurie, A. B., Israel-Biet, D., Picard, C., Gaubert, M. R., Jouneau, S., Naccache, J.-M., Mankikian, J., Ménard, C., … Crestani, B. (2016). Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. European Respiratory Journal, 48(6), 1721–1731. 

https://doi.org/10.1183/13993003.02115-2015 

Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., Hu, L. S., Cheng, H.-L., Jedrychowski, M. P., Gygi, S. P., Sinclair, D. A., Alt, F. W., & Greenberg, M. E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666), 2011–2015. https://doi.org/10.1126/science.1094637 

Cano-Jiménez, E., Hernández González, F., & Peloche, G. B. (2018). Comorbidities and complications in idiopathic pulmonary fibrosis. Medical Sciences, 6(3). 

https://doi.org/10.3390/medsci6030071 

Chang, C.-H., Tsai, W.-C., Lin, M.-S., Hsu, Y.-H., & Pang, J.-H. S. (2011). The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration. Journal of Applied Physiology (Bethesda, Md.: 1985), 110(3), 774–780. https://doi.org/10.1152/japplphysiol.00945.2010

Cho, M. E., & Kopp, J. B. (2010). Pirfenidone: An anti-fibrotic and cytoprotective agent as therapy for progressive kidney disease. Expert Opinion on Investigational Drugs, 19(2), 275–283. https://doi.org/10.1517/13543780903501539 

Ebihara, T., Venkatesan, N., Tanaka, R., & Ludwig, M. S. (2000). Changes in extracellular matrix and tissue viscoelasticity in bleomycin–induced lung fibrosis. American Journal of Respiratory and Critical Care Medicine, 162(4), 1569–1576. 

https://doi.org/10.1164/ajrccm.162.4.9912011 

Grabarevic, Z., Tisljar, M., Artukovic, B., Bratulic, M., Dzaja, P., Seiwerth, S., Sikiric, P., Peric, J., Geres, D., & Kos, J. (1997). The influence of BPC 157 on nitric oxide agonist and antagonist induced lesions in broiler chicks. Journal of Physiology, Paris, 91(3–5), 139–149. https://doi.org/10.1016/s0928-4257(97)89478-8 

Habiel, D. M., Espindola, M. S., Kitson, C., Azzara, A. V., Coelho, A. L., Stripp, B., & Hogaboam, C. M. (2019). Characterization of CD28null T cells in idiopathic pulmonary fibrosis. Mucosal Immunology, 12(1), 212–222. https://doi.org/10.1038/s41385-018-0082-8

Hewitson, T. D., Kelynack, K. J., Tait, M. G., Martic, M., Jones, C. L., Margolin, S. B., & Becker, G. J. (2001). Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis. Journal of Nephrology, 14(6), 453–460. 

Hinz, B. (2012). Mechanical aspects of lung fibrosis. Proceedings of the American Thoracic Society, 9(3), 137–147. https://doi.org/10.1513/pats.201202-017AW 

Humiston, J. E. Pharmacy Compounding Committee Review: Nicotinamide Adenine Dinucleotide (NAD+). U.S. Food and Drug Administration. 68. 

Iyer, S. N., Hyde, D. M., & Giri, S. N. (2000). Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammation. Inflammation, 24(5), 477–491. https://doi.org/10.1023/a:1007068313370

King, T. E., Pardo, A., & Selman, M. (2011). Idiopathic pulmonary fibrosis. The Lancet, 378(9807), 1949–1961. https://doi.org/10.1016/S0140-6736(11)60052-4 

Legutko, A., Lekeux, P., & Bureau, F. (2009). NAD+-Consuming Enzymes in the Regulation of Lung Immune Responses. The Open Immunology Journal, 2(1), 42–51. 

https://doi.org/10.2174/1874226200902010042 

Ley, B., & Collard, H. R. (2013). Epidemiology of idiopathic pulmonary fibrosis. Clinical Epidemiology, 5, 483–492. https://doi.org/10.2147/CLEP.S54815 

Li, L., Wang, L., Li, L., Wang, Z., Ho, Y., McDonald, T., Holyoake, T. L., Chen, W., & Bhatia, R. (2012). Activation of p53 by SIRT1 Inhibition Enhances Elimination of CML Leukemia Stem Cells in Combination with Imatinib. Cancer Cell, 21(2), 266–281. 

https://doi.org/10.1016/j.ccr.2011.12.020 

Liu, T. F., & McCall, C. E. (2013). Deacetylation by SIRT1 Reprograms Inflammation and Cancer. Genes & Cancer, 4(3–4), 135–147. https://doi.org/10.1177/1947601913476948 Margaritopoulos, G. A., Trachalaki, A., Wells, A. U., Vasarmidi, E., Bibaki, E., Papastratigakis, G., 

Detorakis, S., Tzanakis, N., & Antoniou, K. M. (2018). Pirfenidone improves survival in IPF: Results from a real-life study. BMC Pulmonary Medicine, 18(1), 177. https://doi.org/10.1186/s12890-018-0736-z 

Misra, H., & Rabideau, C. (2000). Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Molecular and Cellular Biochemistry, 204, 119–126. https://doi.org/10.1023/A:1007023532508 

Nakayama, S., Mukae, H., Sakamoto, N., Kakugawa, T., Yoshioka, S., Soda, H., Oku, H., Urata, Y., Kondo, T., Kubota, H., Nagata, K., & Kohno, S. (2008). Pirfenidone inhibits the expression

of HSP47 in TGF-beta1-stimulated human lung fibroblasts. Life Sciences, 82(3–4), 210–217. https://doi.org/10.1016/j.lfs.2007.11.003 

Pieper, A. A., Verma, A., Zhang, J., & Snyder, S. H. (1999). Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends in Pharmacological Sciences, 20(4), 171–181. https://doi.org/10.1016/s0165-6147(99)01292-4 

Plantier, L., Cazes, A., Dinh-Xuan, A.-T., Bancal, C., Marchand-Adam, S., & Crestani, B. (2018). Physiology of the lung in idiopathic pulmonary fibrosis. European Respiratory Review, 27(147). https://doi.org/10.1183/16000617.0062-2017 

Prasad, R., Gupta, N., Singh, A., & Gupta, P. (2015). Diagnosis of idiopathic pulmonary fibrosis: Current issues. Intractable & Rare Diseases Research, 4(2), 65–69. 

https://doi.org/10.5582/irdr.2015.01009 

Pulmonary fibrosis—Symptoms and causes. (n.d.). Mayo Clinic. Retrieved November 25, 2020, from 

https://www.mayoclinic.org/diseases-conditions/pulmonary-fibrosis/symptoms-causes/ syc-20353690 

Sikiric, P. S., Seiwerth, S., Rucman, R., Turkovic, B., Rokotov, D. S., Brcic, L., Sever, M., Klicek, R., Radic, B., Drmic, D., Ilic, S., Kolenc, D., Suran, J., Vrcic, H., & Sebecic, B. (2012). Effect of pentadecapeptide BPC 157 on gastrointestinal tract. Cell/Tissue Injury and Cytoprotection/Organoprotection in the Gastrointestinal Tract, 30, 191–201. https://doi.org/10.1159/000338435 

Shaikh, S. B., Prabhu, A., & Bhandary, Y. P. (2018). Targeting anti-aging protein sirtuin (Sirt) in the diagnosis of idiopathic pulmonary fibrosis. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.28033

Stancic-Rokotov, D., Slobodnjak, Z., Aralica, J., Aralica, G., Perovic, D., Staresinic, M., Gjurasin, M., Anic, T., Zoricic, I., Buljat, G., Prkacin, I., Sikiric, P., Seiwerth, S., Rucman, R., Petek,

M., Turkovic, B., Kokic, N., Jagic, V., & Boban-Blagaic, A. (2001). Lung lesions and anti-ulcer agents beneficial effect: Anti-ulcer agents pentadecapeptide BPC 157, ranitidine, omeprazole and atropine ameliorate lung lesion in rats. Journal of Physiology, Paris, 95(1–6), 303–308. https://doi.org/10.1016/s0928-4257(01)00042-0 

Thannickal, V. J., & Horowitz, J. C. (2006). Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proceedings of the American Thoracic Society, 3(4), 350–356. https://doi.org/10.1513/pats.200601-001TK 

Todd, N. W., Luzina, I. G., & Atamas, S. P. (2012). Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis & Tissue Repair, 5(1), 11. 

https://doi.org/10.1186/1755-1536-5-11 

Wang, Q., Hyde, D. M., & Giri, S. N. (1992). Abatement of bleomycin-induced increases in vascular permeability, inflammatory cell infiltration, and fibrotic lesions in hamster lungs by combined treatment with taurine and niacin. Laboratory Investigation; a Journal of Technical Methods and Pathology, 67(2), 234–242. 

Winterbottom, C. J., Shah, R. J., Patterson, K. C., Kreider, M. E., Panettieri, R. A., Rivera-Lebron, B., Miller, W. T., Litzky, L. A., Penning, T. M., Heinlen, K., Jackson, T., Localio, A. R., & Christie, J. D. (2018). Exposure to ambient particulate matter is associated with accelerated functional decline in Idiopathic Pulmonary Fibrosis. Chest, 153(5), 1221–1228. https://doi.org/10.1016/j.chest.2017.07.034 

Ying, W. (2013, December 10). Roles of NAD+, PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury [Review Article]. Scientifica; Hindawi. https://doi.org/10.1155/2013/691251.