Estrogen Replacement Therapy (ERT) and Alzheimer’s Disease

Presentation by Huma Erboru

Peer reviewers: Navya Tanniru & Gizem Arslan

Introduction:

Late-onset Alzheimer’s disease is a clinical phenomenon that is characterized by neurodegeneration in the brain and memory loss, and its neurological symptoms usually emerge prior to the onset of clinical symptoms, around the ages of 45-55 (Alzheimer’s Association, 2020). Women make up the 2/3 of the population affected by AD (Chene et al., 2015), most probably due to estrogen loss during the menopause transition state, affecting not only women’s reproductive capabilities but also many neurological mechanisms (Brinton et al., 2015). These neurological disruptions occur in the mechanisms that are most affected by AD, such as hypometabolism (Ding et al., 2013), accumulation of Aβ plaques, which are misfolded amino peptides that are toxic to nerve cells, (Yao et al., 2012), hippocampus and prefrontal cortex deficits (Epperson et al., 2012) and mitochondrial deficiencies (Brinton, 2008).

Estrogen Replacement Therapy (ERT) has been offered as a preventative, if not treating, solution for protecting the brain against changes associated with estrogen deficiency (Brinton, 2004). Although findings are mostly controversial (e.g., Coker et al., 2009), most scientists propose starting the therapy a maximum of 5 years before the onset of menopause (Mielke, Vemuri, & Rocca, 2014), using only the estradiol form of the estrogen (Brinton, 2004) and checking with a doctor for possible side effects. (FDA, 2014) These can contribute to a beneficial outcome of the treatment.

Future Research

  • More clinical trials conducted with women not on yet in the menopause transition to

    assess the effects of starting ERT before neurological disruptions occur

    ● Identifying at-risk groups, such as women with a first-degree relative diagnosed with

    AD, to prevent changes from occurring

    ● Researching why some women don’t undergo neurological changes associated with

    menopause transition to identify resilience factors

 

References

2020 Alzheimer’s disease facts and figures. (2020). Alzheimer’s & Dementia, 16(3), 391–460. doi.org/10.1002/alz.12068

Adams, M. M., Shah, R. A., Janssen, W. G. M., & Morrison, J. H. (2001). Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8071–8076. doi.org/10.1073/pnas.141215898

Balthazart, J., & Ball, G. F. (2006). Is brain estradiol a hormone or a neurotransmitter? Trends in Neurosciences, 29(5), 241–249. doi.org/10.1016/j.tins.2006.03.004

Barros, R. P. A., Gabbi, C., Morani, A., Warner, M., & Gustafsson, J. Å. (2009). Participation of ERα and ERβ in glucose homeostasis in skeletal muscle and white adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 297(1), 124–133.

doi.org/10.1152/ajpendo.00189.2009

Brinton, Roberta D. (2004). Impact of estrogen therapy on Alzheimer’s disease: A fork in the road? CNS Drugs, 18(7), 405–422. doi.org/10.2165/00023210-200418070-00001

Brinton, Roberta D., Yao, J., Yin, F., Mack, W. J., & Cadenas, E. (2015). Perimenopause as a neurological transition state. Nature Reviews Endocrinology, 11(7), 393–405. doi.org/10.1038/nrendo.2015.82

Brinton, Roberta Diaz. (2008). The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends in Neurosciences, 31(10), 529–537. doi.org/10.1016/j.tins.2008.07.003

Burger, H. G., Dudley, E. C., Robertson, D. M., & Dennerstein, L. (2002). Hormonal changes in the menopause transition. Recent Progress in Hormone Research, 57, 257–275.

Chene, G., Beiser, A., Au, R., Preis, S. R., Wolf, P. A., Dufoil, C., & Seshadri, S. (2015). Gender and incidence of dementia in the Framingham Heart Study from midadult life. Alzheimer’s & Dementia, 11, 310–320.

Coker, L. H., Espeland, M. A., Rapp, S. R., Legault, C., Resnick, S. M., Hogan, P., … Shumaker, S. A. (2010). Postmenopausal hormone therapy and cognitive outcomes: The Women’s Health Initiative Memory Study (WHIMS). Journal of Steroid Biochemistry and Molecular Biology, 118(4–5), 304–310. doi.org/10.1016/j.jsbmb.2009.11.007

Ding, F., Yao, J., Zhao, L., Mao, Z., Chen, S., & Brinton, R. D. (2013). Ovariectomy Induces a Shift in Fuel Availability and Metabolism in the Hippocampus of the Female Transgenic Model of Familial Alzheimer’s.PLoS ONE, 8(3), 13–15. doi.org/10.1371/journal.pone.0059825

Epperson, C. N., Amin, Z., Ruparel, K., Gur, R., & Loughead, J. (2012). Interactive effects of estrogen and serotonin on brain activation during working memory and affective processing in menopausal women. Psychoneuroendocrinology, 37(3), 372–382. doi.org/10.1016/j.psyneuen.2011.07.007

Espeland, M. A., Brinton, R. D., Hugenschmidt, C., Manson, J. A. E., Craft, S., Yaffe, K., … Resnick, S. M. (2015). Impact of type 2 diabetes and postmenopausal hormone therapy on incidence of cognitive impairment in older women. Diabetes Care, 38(12), 2316–2324. doi.org/10.2337/dc15-1385

Fortress, A. M., & Frick, K. M. (2014). Epigenetic regulation of estrogen-dependent memory. Frontiers in Neuroendocrinology, 35(4), 530–549. doi.org/10.1016/j.yfrne.2014.05.001

Foster, T. C. (2012). Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus, 22(4), 656–669. doi.org/10.1002/hipo.20935

Gordon, B. A., Blazey, T. M., Su, Y., Hari-Raj, A., Dincer, A., Flores, S., … Benzinger, T. L. S. (2018). Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. The Lancet Neurology, 17(3), 241–250. doi.org/10.1016/S1474-4422(18)30028-0

Hara, Y., Yuk, F., Puri, R., Janssen, W. G. M., Rapp, P. R., & Morrison, J. H. (2014). Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proceedings of the National Academy of Sciences, 111(1), 486–491. doi.org/10.1073/pnas.1311310110

Kelly, J., Bienias, J., Shah, A., Meeke, K., Schneider, J., Soriano, E., & Bennett, D. (2008). Levels of Estrogen Receptors alpha and beta in Frontal Cortex of Patients with Alzheimers Disease: Relationship to Mini-Mental State Examination Scores. Current Alzheimer Research, 5(1), 45–51. doi.org/10.2174/156720508783884611

Li, R., He, P., Cui, J., Staufenbiel, M., Harada, N., & Shen, Y. (2013). Brain Endogenous Estrogen Levels Determine Responses to Estrogen Replacement Therapy via Regulation of BACE1 and NEP in Female Alzheimer’s Transgenic Mice. Molecular Neurobiology, 47, 857–867.

Li, R., & Singh, M. (2014). Sex differences in cognitive impairment and Alzheimer’s disease. Frontiers in Neuroendocrinology, 35(3), 385–403. doi.org/10.1016/j.yfrne.2014.01.002

Mattson, M. P., & Magnus, T. (2006). Ageing and neuronal vulnerability. Nature Reviews Neuroscience, 7(4), 278–294. doi.org/10.1038/nrn1886

McEwen, B. S., & Alves, S. E. (1999). Estrogen Actions in the Central Nervous System. Endocrine Reviews, 20(3), 279–307. doi.org/10.1212/WNL.0000000000001776

Menopause & Hormones: Common Questions. (2019). U.S. Food & Drug Administration. Retrieved from http://proxy.lib.ohiostate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true& db=s3h&AN=14904278&site=ehost-live

Mielke, M., Vemuri, P., & Rocca, W. (2014). Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clinical Epidemiology, 6, 37–48. doi.org/10.2147/CLEP.S37929

Mosconi, L., Berti, V., Quinn, C., McHugh, P., Petrongolo, G., Varsavsky, I., … Brinton, R. D. (2017). Sex differences in Alzheimer risk. Neurology, 89(13), 1382–1390. doi.org/10.1212/WNL.0000000000004425

Nilsen, J., Irwin, R. W., Gallaher, T. K., & Brinton, R. D. (2007). Estradiol in vivo regulation of brain mitochondrial proteome. Journal of Neuroscience, 27, 14069–14077.

Rasgon, N. L., Geist, C. L., Kenna, H. A., Wroolie, T. E., Williams, K. E., & Silverman, D. H. S. (2014). Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia. PLoS ONE, 9(3). doi.org/10.1371/journal.pone.0089095

Rasgon, N. L., Kenna, H. A., Wroolie, T. E., Kelley, R., Silverman, D., Brooks, J., … Reiss, A. (2011). Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiology of Aging, 32(11), 1942–1948. doi.org/10.1016/j.neurobiolaging.2009.12.005

Rettberg, J. R., Yao, J., & Brinton, R. D. (2014). Estrogen: A master regulator of bioenergetic systems in the brain and body. Frontiers in Neuroendocrinology, 35(1), 8–30. doi.org/10.1016/j.yfrne.2013.08.001

Scharfman, H. E., & MacLusky, N. J. (2006). Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Frontiers in Neuroendocrinology, 27(4), 415–435. doi.org/10.1016/j.yfrne.2006.09.004

Scheyer, O., Rahman, A., Hristov, H., Berkowitz, C., Isaacson, R. S., Diaz Brinton, R., & Mosconi, L. (2018). Female Sex and Alzheimer’s Risk: The Menopause Connection. The Journal of Prevention of Alzheimer’s Disease, 5(4), 225–230.

Waters, E. M., Yildirim, M., Janssen, W. G. M., Lou, W. Y. W., McEwen, B. S., Morrison, J. H., & Milner, T. A. (2011). Estrogen and aging affect the synaptic distribution of estrogen receptor beta-immunoreactivity in the CA1 region of female rat hippocampus. Brain Research, 1379, 86–97. doi.org/10.1016/j.brainres.2010.09.069

Weber, M. T., Maki, P. M., & McDermott, M. P. (2014). Cognition and mood in perimenopause: A systematic review and meta-analysis. Journal of Steroid Biochemistry and Molecular Biology, 142, 90–98. doi.org/10.1016/j.jsbmb.2013.06.001

Yao, J., Irwin, R., Chen, S., Hamilton, R., Cadenas, E., & Brinton, R. D. (2012). Ovarian hormone loss induces bioenergetic deficits and mitochondrial β-amyloid. Neurobiology of Aging, 33(8), 1507–1521. doi.org/10.1016/j.neurobiolaging.2011.03.001

Yue, X., Lu, M., Lancaster, T., Cao, P., Honda, S. I., Staufenbiel, M., … Li, R. (2005). Brain estrogen deficiency accelerates Aβ plaque formation in an Alzheimer’s disease animal model. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 19198–19203. doi.org/10.1073/pnas.0505203102